
Variables and Functions

ROBOTC Software

Variables
• A variable is a space in your robots memory

where data can be stored, including whole
numbers, decimal numbers, and words

• Variable names follow the same rules as custom
motor and sensor names: capitalization,
spelling, availability

• Variables can improve the readability and
expandability of your programs

Creating a Variable
• Declare the variable (stating its type and its

name) once at the beginning of task main:

Type of data:
• int
• float Name of variable:

• Starts with letter
• Letters, numbers, and

underscores are ok
• Not a reserved word

Presenter
Presentation Notes
The name of a variable should be descriptive. Use words!When using multiple words, most programmers start with lowercase and then capitalize the first letter of each additional word. This is affectionately known as “drinking camel” notation: first letter lowercase id the head down drinking, then the later uppercase letters are the humps. Example: numberOfWords = 3;

Variable Types

Data Type Description

Example

Code

Integer Positive and negative whole numbers,
as well as zero

-35, -1, 0,
33, 100

int

Floating Point
Number

Numeric values with decimal points
(even if the decimal part is zero)

-.123, 0.56,
3.0, 1000.07

float

Boolean

True or false – Useful for expressing
the outcomes of comparisons

true, false

bool

Character Individual characters, placed in single
quotes. Not useful with POE kits.

‘L’, ‘f’, ‘8’ char

String Strings of characters, such as words
and sentences placed in double
quotes. Not useful with POE kits.

“Hello
World!”,
“asdf”

string

Creating a Variable
• Initialize the variable by giving it its initial

value:

• Declaration and initialization are often

contracted into a single statement:

Using the Value of a Variable
• The value stored in the variable can be

referenced by using the variable’s name
anywhere the value of the variable could
be used.

• This does not change the value of
 the variable.
• Only referenced when this line executed;

in this example, if “a” changes later, it
won’t automatically update the motor
speed.

Presenter
Presentation Notes
When this command executes, the leftMotor’s speed will be set to the opposite of the value of the variable speed.Note the asterix is used for multiplication.

Assigning a Value to a Variable
• The assignment operator is the single

equal sign
• The right-hand side of the equal sign is

evaluated, and then the value is assigned
to variable on the left-hand side

• This is not the equality from algebra!
 Declaration

Initialization

Assignment

Assignment

Presenter
Presentation Notes
speed=speed+1 has “no solution” in algebra. The algebra equal sign is most similar to the conditional ==, but in algebra it is taken as a claim that it is true instead of a question asking whether it is true.

Assigning a Value to a Variable
• The left-hand side of the assignment

operator must be a variable.

Correct:

Incorrect:

Variable Applications

• Variables are needed for most programs.
Here are some examples:
• Example #1: Repeat code 5 times
• Example #2: Count user’s button presses
• Example #3: Remember if the user EVER

pushed a button
• Example #4: Remember a maximum value
• Example #5: Debug a program by

remembering which branch of code has been
executed.

Variable Application #1:
Loop n times
Task description: Start and stop a motor 5
times.

Instead of writing the same code multiple
times, use a variable to remember how
many times the code has executed so far.

Variable Application #1:
Loop n times

• This loop will run five times, with
a=0,1,2,3,4

Increment

Presenter
Presentation Notes
The “Do something here” comment can be replaced by code that you want to run 5 times.An assignment that increments is so commonly used that there is shorthand way to write it:count=count+increment;is the same as count+=increment;

Variable Application #2:
Count the user’s actions
Task description: Count the number of times
a user does something.

E.g., how many times did the user press the
“increase volume” button on a remote?

Use a variable to remember how many
times the user performed that action so far.

Variable Application #2:
Count the user’s actions

The variable nPresses remembers how
many times the bump switch was pressed
before the limit switch was pressed.

Presenter
Presentation Notes
If the untilRelease is left out, nPresses will increment by 1 every 0.050 seconds. A typical quick press of the bumpSwitch might last 0.400 seconds! If the wait(0.05) is left out, nPresses might increment several times when the button is released. This is because “releasing” the bump switch actually makes it bounce back and forth between 1 and 0 several times as microscopic sparks jump across the small air gap as the button is first released.

Variable Application #3:
Remember whether an event ever
happened.

Task description: Observe the user for 5
seconds and remember whether they
EVER pressed a switch, even briefly.

Use a variable to remember whether the
event has happened yet. This is called a
flag. Once the flag is thrown, it stays
thrown until cleared.

Variable Application #3: Set a “flag”

• The variable touched remembers if the

bump switch was EVER pushed.
• After this code, touched will be true,

even if bump was pressed and released.

Presenter
Presentation Notes
A flag is “raised” (i.e., set to true) if a condition is *ever* met during a certain time period, even if it was *usually* not met.This snippet of code might be useful in a material sorter if the machine is checking for conductivity as a marble rolls by. Two 24- or 26-gauge wires, connected to where the black and white wires normally go in a digital input, can make a “conductivity sensor”.

Variable Application #4:
Remember the maximum value

Task description: Observe a sensor for 5
seconds and remember its highest value.

Use a variable to remember the biggest
value that has occurred so far.

Presenter
Presentation Notes
This might be used with a scale as a truck drives over the scale. The heaviest value was when the entire truck was on the scale. It might also be used with a light sensor as an opaque object passes in front of a light. The dimmest value was when the object was blocking the light.

Variable Application #4:
Remember a maximum

Similar to the flag, but the variable remembers
an “int” instead of a “bool”.

Remember the new max!

Presenter
Presentation Notes
This snippet of code might be useful to remember the darkest value of a light sensor as an object passes in front of it.

Variable Application #4:
Remember what has executed
Run-time errors can be hard to figure out
without knowing which parts of your
program are being executed!

Sometimes slowing down a program with
the step debugger is impractical.

Use a variable to remember (and report)
what parts of your program executed.

Variable Application #5:
Debug a program

Remembers
the most
recent code

Counts the #
of times loop
is executed

Presenter
Presentation Notes
By opening the “variables” tab of the debugger windows, your program can run and the value of “a” will indicate where the program most recently set the value of “a”.

Variable Application #5:
Debug a program
• Activate “global

variables” tab in
the debug
window.

• Variable values
reported here as
program runs

Presenter
Presentation Notes
By opening the “variables” tab of the debugger windows, your program can run and the value of “a” will indicate where the program most recently set the value of “a”.

Global vs. Local Variables

• Variables can have either a “global” or a “local”
scope.
– Global variable

• Can be read or changed from any task or function in your
code.

• Its value can be seen/read globally.

– Local variable
• Belongs only to the task or function in which it was created
• Value can only be read or changed from within that task or

function
• Value can only be seen/read locally
• Generally the type of variable you’ll want to use, local to

“main”

Creating Local Variables (preferred)
• To create a local variable, declare it within the curly

braces of task main or one of your functions.
• You will only be able to change the value of this variable

within its task or function.

Creating Global Variables
• To create a global

variable, declare it
after your pragma
statements, but
before task main or
any function
declarations.

• This will allow your
variable to be
changed by any
task or function in
your program.

Functions

• Functions
– Group together several lines of code
– Referenced many times in task main or in other

functions
• Creating Functions

Example: LED on if bumper is pressed, off if
released

1. Function header (name of function)
2. Function definition (code in the function)
3. Function call (where function code will run)

Sample Function “LEDControl()”

Function Declaration

• Function declarations (or prototypes)
declare that a function exists and indicates
its name

• Function declarations between #pragma
statements and task main

• Function declaration optional if function
definition is above task main

Function Definition

• Function definitions define the code that belongs
to the function

Function Call

• Function calls
– Call and run code from function
– Placed in task main or other functions

References
Carnegie Mellon Robotics Academy. (2011). ROBOTC.

Retrieved from http://www.robotc.net

	Variables and Functions
	Variables
	Creating a Variable
	Variable Types
	Creating a Variable
	Using the Value of a Variable
	Assigning a Value to a Variable
	Assigning a Value to a Variable
	Variable Applications
	Variable Application #1: �Loop n times
	Variable Application #1: �Loop n times
	Variable Application #2: �Count the user’s actions
	Variable Application #2: �Count the user’s actions
	Variable Application #3: �Remember whether an event ever happened.
	Variable Application #3: Set a “flag”
	Variable Application #4: �Remember the maximum value
	Variable Application #4: �Remember a maximum
	Variable Application #4: �Remember what has executed
	Variable Application #5: �Debug a program
	Variable Application #5: �Debug a program
	Global vs. Local Variables
	Creating Local Variables (preferred)
	Creating Global Variables
	Functions
	Sample Function “LEDControl()”
	Function Declaration
	Function Definition
	Function Call
	References

