
While Loops
and

If-Else Structures
ROBOTC Software

While Loops

• While loop is a structure within ROBOTC
• Allows a section of code to be repeated as long

as a certain condition remains true

• Three main parts to every while loop

1. The word “while”
2. The condition
3. Commands to be repeated

1. The Word While

• Every while loop begins with the keyword
while

2. The Condition

• Condition controls how long or how many
times a while loop repeats
– When condition is true, the while loop repeats
– When condition is false, the while loop ends

and the remainder of the program executes

• Condition is checked once every time loop
repeats before commands between curly
braces are run

3. Commands To Be Repeated

• Commands between curly braces will
repeat while condition is true

• Program checks at the beginning of each
pass through the loop

Boolean Logic

• Program decisions are always based on
questions

• Only two possible answers
– yes or no
– true or false

• Statements that can be only true or false
are called Boolean statements

• Their true-or-false value is called a truth
value.

Boolean Logic

Boolean Logic

Writing a condition: Example
• While the bump switch is not pressed:
 wait until it’s dark, then turn on light;
 wait until it’s light, then turn off light

While loop: more flexible than an
“until” statement
• In this code, a motor runs until an object is

within 50 cm.
• The program can’t respond to an

emergency shutoff switch.
• The program can’t control other outputs in

response to other inputs.

Program waits
here until an
object is near.

While loop: more flexible than an
“until” statement
• A while loop can do the same thing as the

“until” statement.
• Example code using until statement:

Program waits
here until an
object is near.

Program loops
here until an
object is near.

• While loop can do the same thing:

While loop is more flexible than an
“until” statement
• Other conditions can be added to the while

condition, e.g. an emergency shutoff.
• Other code can be executed in the while

loop.

Can control other outputs
inside this bracket.

Can expand the
condition

Presenter
Presentation Notes
Later, in slide #22, we’ll see how to make the “and” from the && operator.

While loop is more flexible than an
“until” statement

Can control other outputs
inside this bracket.

Can expand
the condition

&& means “AND”

• Example equivalent to “until”:

• Example using this flexibility:

range from 0 to 100

Presenter
Presentation Notes
In the top example, the leftMotor starts and then continues until 50<=sonar.
In the bottom example, the leftMotor start and continues until 50<=sonar<70, and meanwhile, the potentiometer controls the rightMotor speed.
Note: Potentiometer ranges from 0 to 4095, so dividing by 400 creates a number within the range required for the motor speed.
Note: After the loop exits, the rightMotor will continue running at its last assigned speed, until reassigned or until the program ends.
Note: Compound inequalities are correct math language, but not correct RobotC: 50<SensorValue(sonar)<70 is not an acceptable syntax for a condition. Use the &&.

Timers

• Loop control
– Where would the wait statement go if we

wanted the loop to repeat for a controlled
amount of time?

– Nowhere! We need something else.
• Solution: Timers

– Internal stopwatches (4 available)
– Like encoders, timers should be cleared

before they are used
– Be careful: don’t clear a timer in a timed loop

Presenter
Presentation Notes
Clearing timers within a loop may continually reset the timers which may create an infinite loop.

Timers
 Timer T1 is used as the condition for the

while loop, which will run for 30 seconds

Presenter
Presentation Notes
More information available at the Cortex Video Trainer Resource. Click Remote Control then Timers Videos.

If Statements

• If statement in the program is evaluated by
condition contained in parentheses
– If condition is true, commands between

braces are run
– If condition is false, those commands are

ignored
• Very similar to how a while loop works, but

does not repeat the code

If-Else Statements

• If-else statement is an expansion of if
statement
– If checks condition and runs appropriate

commands when it evaluates to true
– Else allows code to run when condition is

false
– Either if or else branch is always run once

Multiple If-Else Statements

• Be careful when using two separate if-else
statements, particularly if both are used to
control the same mechanism

• One branch of each if-else statement is
always run so that you may create a
scenario where the two statements ‘fight’
one another

Multiple If-Else Statements

 In this example, if
one of the touch
sensors is pressed,
the rightMotor will
be turned on in one
if-else statement
and immediately
turned off in the
other

Multiple If-Else Statements

 This can be
corrected by
embedding the
second if-else within
the else branch of
the first if-else. ,The
second condition is
only checked if the
first condition is
false.

Nested if-else statements: else if

 An else {if else} statement can also be
represented as an else if - else

Using a range of values in a condition
Two strategies will work:
• Boolean logic
• Nested if-else statements

Task: Control motor with potentiometer “knob”:
Example:

Potentiometer Value Motor Speed
0-500 0

501-1000 63
1001-4095 127

Using a range of values in a condition
Strategy #1: Boolean logic Potentiometer

Value
Motor Speed

0-500 0
501-1000 63

1001-4095 127

Boolean
operator

RobotC
symbol

AND &&

OR ||

True only if the sensor
value is more than 500
AND less than 1000

.

Presenter
Presentation Notes
The AND symbol is a double ampersand, found as the “uppercase” version of the 7 on most keyboards.

The OR symbol is typed using two of the “pipe” characters in a row. The “pipe” character can be found on most keyboards above the return/enter key, as the “uppercase” version of the backslash.

Note: Since the potentiometer (nicknamed “knob” here using sensor and motor setup) has to be between 0 and 4095, there was no need to use a && in the first and third if statements.

Using a range of values in a condition
Strategy #1: Boolean logic.
 In this example, this strategy wastes time

and processor power. The next strategy is
better…

Four comparisons
waste time here
each loop.

Presenter
Presentation Notes
The AND symbol is a double ampersand, found as the “uppercase” version of the 7 on most keyboards.

The OR symbol is typed using two of the “pipe” characters in a row. The “pipe” character can be found on most keyboards above the return/enter key, as the “uppercase” version of the backslash.

Note: Since the potentiometer (nicknamed “knob” here using sensor and motor setup) has to be between 0 and 4095, there was no need to use a && in the first and third if statements.

Using a range of values in a condition
Strategy #2: Nested if-else
 preferable in this example.
 In this case, the false value
 of the first condition can be used again by

nesting a 2nd if statement inside the first else.

Potentiomete
r Value

Motor Speed

0-500 0
501-1000 63
1001-4095 127

Presenter
Presentation Notes
The AND symbol is a double ampersand, found as the “uppercase” version of the 7 on most keyboards.

The OR symbol is typed using two of the “pipe” characters in a row. The “pipe” character can be found on most keyboards above the return/enter key, as the “uppercase” version of the backslash.

Note: Since the potentiometer (nicknamed “knob” here using sensor and motor setup) has to be between 0 and 4095, there was no need to use a && in the first and third if statements.

References
Carnegie Mellon Robotics Academy. (2011). ROBOTC.

Retrieved from http://www.robotc.net

	While Loops�and�If-Else Structures
	While Loops
	1. The Word While
	2. The Condition
	3. Commands To Be Repeated
	Boolean Logic
	Boolean Logic
	Boolean Logic
	Writing a condition: Example
	While loop: more flexible than an “until” statement
	While loop: more flexible than an “until” statement
	While loop is more flexible than an “until” statement
	While loop is more flexible than an “until” statement
	Timers
	Timers
	If Statements
	If-Else Statements
	Multiple If-Else Statements
	Multiple If-Else Statements
	Multiple If-Else Statements
	Nested if-else statements: else if
	Using a range of values in a condition
	Using a range of values in a condition
	Using a range of values in a condition
	Using a range of values in a condition
	References

